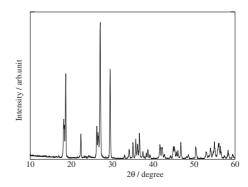
One-step Synthesis of LiVPO₄F/C Cathode Material with High Performance

Shengkui Zhong,*1,2 Jian Wang,¹ Yanwei Li,¹,² Letong Liu,¹ Jiequn Liu,¹,² and Jiangwen Yang¹,² ¹Department of Material and Chemical Engineering, Guilin University of Technology, Guilin 541004, P. R. China ²Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, P. R. China

(Received November 25, 2008; CL-081111; E-mail: zhongshk@glite.edu.cn)

LiVPO₄F/C cathode material was synthesized by a novel one-step solid-state reaction method using humic acid as both reduction agent and carbon sources. The SEM image showed that the particles merged with each other to form a porous structure. Electrochemical test showed that the initial discharge capacity of LiVPO₄F/C powder was $139\,\text{mA}\,\text{h}\,\text{g}^{-1}$ and the capacity was $132\,\text{mA}\,\text{h}\,\text{g}^{-1}$ after 30 cycles.

Since the pioneering work on LiFePO₄ by Padhi et al., 1 lithium transition-metal phosphates LiMPO₄ (M = Mn, Fe, and V) and lithium transition-metal fluorophosphates LiVPO₄F have attracted much attention as potential new cathode materials for lithium ion batteries. Among these compounds, LiFePO₄ shows a flat voltage plateau at 3.5 V vs. Li⁺/Li and a theoretical specific capacity of 170 mA h g⁻¹ and, therefore, was previously considered as a candidate cathode material to replace the popularly used LiCoO2. Many attempts have been performed to improve the rate capability of LiFePO₄ by minimizing the particle size, cation doping, or conductive coating. ^{2–8} However, low gravimetric density and low-voltage plate of LiFePO₄ limit the performance improvement for applications in lithium ion batteries. Alternately, LiVPO₄F is promising for this purpose because it offers the potential of V^{3+}/V^{4+} redox couple at 4.2 V vs. Li⁺/ Li, which is compatible with the system presently used in lithium


By now, the reported methods for synthesizing LiVPO₄F are two-step solid-state reaction⁹⁻¹⁴ and sol-gel method. ¹⁵ The twostep solid-state reaction method is complicated by synthesizing the VPO₄ intermediate which is used to react with LiF to produce the final LiVPO₄F. Moreover, it is really hard to get LiVPO₄F with high purity by two-step solid-state reaction. Though the particle size of the LiVPO₄F synthesized by solgel method is small and the electrochemical performance is good, the synthesis cost is high and synthesis cycle is long leading to difficult industrialized production. 15 One-step solid-state reaction method is a versatile method for preparing electrode material for lithium ion batteries. 16,17 Its advantages include simple synthetic process, easy scale-up, energy efficient, and environmental friendly. In this work, LiVPO₄F was synthesized by a novel one-step solid-state reaction method using humic acid as both reduction agent and carbon sources, and the electrochemical performance was evaluated.

 $V_2O_5,\,NH_4H_2PO_4,\,LiF,\,$ and humic acid (consists of C, H, O, and N elements and the molecular weight is about 300) with a molar ratio of 1:2:2:1 were initially ground in a mortar, then thoroughly mixed by ball milling for 4 h, and calcined at $750\,^{\circ}\text{C}$ for 4 h to yield LiVPO $_4F/C$. To avoid the oxidation of vanadium, the process was carried out under flowing Ar atmosphere.

The crystalline phase was identified with powder X-ray diffraction (XRD, Rint-2000, Rigaku) with Cu K α radiation. The lattice parameters were refined with peak positions that were calibrated by internal standard of silicon (99.9% pure). The particle size and morphology of the LiVPO₄F powders were observed by a scanning electron microscope (JEOL, JSM-5600LV) with an accelerating voltage of 20 kV. The carbon content of samples was determined by a carbon–sulfur analyser (Mlti EA2000).

Electrochemical characterization of the sample was performed using a CR2025 cell. For positive electrode fabrication, the prepared powders were mixed with 10 wt % of carbon black and 10 wt % of poly(vinylidene fluoride) in *N*-methyl pyrrolidinone until slurry was obtained. Then, the blended slurries were pasted onto an aluminum current collector. The electrode was dried at 120 °C for 10 h in vacuum. The coin cell consisted of the positive electrode, lithium foil negative electrode separated by a porous polypropylene film, and 1 mol L⁻¹ LiPF₆ in EC:EMC:DMC (1:1:1 in volume) as the electrolyte. The assembly of the cells was carried out in a dry Ar-filled glove box. The cells were charged and discharged over a voltage range of 3.0 to 4.4 V versus Li/Li⁺ electrode at room temperature. Cyclic voltammograms were tested at a scanning rate of 0.1 mV s⁻¹ in the voltage ranges of 3.0–4.9 V.

To synthesize single-phased LiVPO₄F material, the one-step solid-state reaction method using humic acid as the reduction agent was adopted. In the heating of humic acid containing the LiVPO₄F precursor, hydrogen and carbon are generated by the pyrolysis of humic acid, producing a strong reductive atmosphere for the reduction of V⁵⁺ to V³⁺. Figure 1 shows the XRD pattern of the LiVPO₄F/C sample. All diffraction peaks are fully indexed as a triclinic structure with a space group (PĪ) and the unit parameters (a = 5.147, b = 5.291, c = 7.437 Å, $\alpha = 67.365^{\circ}$, $\beta = 67.540^{\circ}$, $\gamma = 81.981^{\circ}$), and no impurity phase is detected. The XRD result demonstrates that a one-step solid-state route can synthesize single-phased LiVPO₄F

Figure 1. XRD pattern of LiVPO₄F/C.

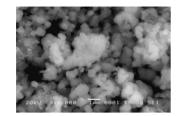


Figure 2. SEM image of LiVPO₄F/C.

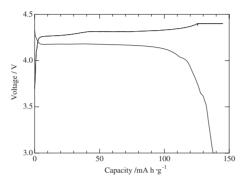


Figure 3. First charge–discharge curves of LiVPO₄F/C.

material using humic acid as the reduction agent. The carbon content of LiVPO $_4$ F/C is 5.42 wt % analyzed by a carbon–sulfur analyser. However, no diffraction peaks from carbon is detected in the XRD pattern, indicating that carbon may exist as amorphous form.

Figure 2 shows the SEM image of LiVPO₄F/C. In the micrograph, the particles merge with each other to form a porous structure. This microstructure helps the electrolyte to penetrate the cathode materials and improves electronic contact among the LiVPO₄F particles. The form of the residual carbon in the micrograph is unclear. It may be covering the surfaces of LiVPO₄F particles smoothly and bridging the particles as porous structure.

Figure 3 shows the first charge–discharge curves of LiVPO₄F/C cycled between 3.0 and 4.4 V at a current density of 100 mA g $^{-1}$. As can be seen in Figure 3, the sample clearly exhibits charge and discharge plateaus around the voltage of 4.2 V vs. Li⁺/Li. These plateaus corresponded to the redox of V $^{3+}$ /V $^{4+}$ that accompanied lithium ion extraction and insertion in LiVPO₄F. The initial charge and discharge capacities of LiVPO₄F/C are about 145 and 139 mA h g $^{-1}$, respectively. The columbic efficiency of the initial charge–discharge cycle is about 95.86%.

The electrochemical cycling performance of LiVPO₄F/C was evaluated in the Li/LiVPO₄F cell configuration in the voltage range of 3.0–4.4 V at room temperature. Figure 4 shows the cyclic charge/discharge profiles for the LiVPO₄F sample at a current of $100\,\text{mA}\,\text{g}^{-1}$. As seen in Figure 4, after 30 cycles, the LiVPO₄F/C sample exhibits discharge capacities of about $132\,\text{mA}\,\text{g}^{-1}$. Namely, after 30 cycles, the capacity loss is about 5.04%. The above results demonstrate that LiVPO₄F/C with high electrochemical performance can be obtained by a simple one-step solid-state method.

In summary, the triclinic structure LiVPO₄F/C has been

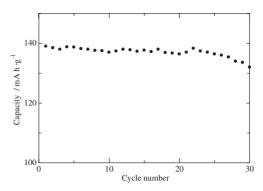


Figure 4. Electrochemical cycling performance of LiVPO₄F/C.

synthesized by one-step solid-state reaction method. The LiVPO₄F/C material exhibits high electrochemical performance with the initial discharge capacities of $139 \, \text{mA g}^{-1}$ and the capacity is $132 \, \text{mA h g}^{-1}$ afer 30 cycles.

This work was supported by Project of Guangxi Joint Graduate Innovation Talent Cultivation Base and Guangxi Natural Science Foundation (Nos. 0832259, 0630004-3A and 0842003-5).

References

- 1 A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, *J. Electrochem. Soc.* **1997**, *144*, 1188.
- J. Xu, G. Chen, Y. J. Teng, B. Zhang, Solid State Commun. 2008, 147, 414.
- B. Jin, E. M. Jin, K.-H. Park, H.-B. Gu, *Electrochem. Commun.* 2008, 10, 1537.
- 4 C. H. Mi, X. G. Zhang, X. B. Zhao, H. L. Li, J. Alloys Compd. 2006, 424, 327.
- 5 K. Hirose, T. Honma, Y. Doi, Y. Hinatsu, T. Komatsu, Solid State Commun. 2008, 146, 273.
- A. Yamada, S. C. Chung, K. Hinokuma, J. Electrochem. Soc. 2001, 148, A224.
- 7 Z. Chen, J. R. Dahn, *J. Electrochem. Soc.* **2002**, *149*, A1184.
- 8 S.-Y. Chung, J. T. Bloking, Y.-M. Chiang, *Nat. Mater.* **2002**, *1*, 123.
- J. Barker, M. Y. Saidi, J. L. Swoyer, J. Electrochem. Soc. 2003, 150, A1394.
- 10 S.-K. Zhong, Z.-L. Yin, Z.-X. Wang, Q.-Y. Chen, J. Cent. South Univ. Technol. 2007, 14, 340.
- 11 J. Barker, M. Y. Saidi, R. K. B. Gover, P. Burns, A. Bryan, J. Power Sources 2007, 174, 927.
- 12 J. Barker, R. K. B. Gover, P. Burns, A. Bryan, M. Y. Saidi, J. L. Swoyer, *J. Electrochem. Soc.* **2005**, *152*, A1776.
- 13 J. Barker, M. Y. Saidi, J. L. Swoyer, J. Electrochem. Soc. 2004, 151, A1670.
- 14 S. Zhong, Z. Yin, Z. Wang, Q. Chen, Rare Met. 2007, 26, 445.
- 15 Y. Li, Z. Zhou, X. P. Gao, J. Yan, J. Power Sources 2006, 160, 633.
- 16 X. Zhou, Y. Liu, Y. Guo, Solid State Commun. 2008, 146, 261
- 17 J.-H. Shin, P. Basak, J. B. Kerr, E. J. Cairns, *Electrochim. Acta* 2008, 54, 410.